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Swept-wedge flows are used to study the effects of pressure gradient and flow angle on
the stability of three-dimensional laminar boundary layers. It is shown that the flow is
absolutely unstable in the chordwise direction, i.e. disturbances grow in time at every
chordwise location, for certain parameter combinations. However, laminar–turbulent
transition may still be a convective process.

1. Introduction
This paper analyses the linear stability of a family of three-dimensional boundary

layers. This study was prompted by the recent discovery by Lingwood (1995, 1996,
1997a, b) of radial absolute instability of the rotating-disk boundary-layer flow and
of related rotating flows such as the Ekman and Bödewadt layers. In those papers it
was proposed that this instability mechanism may promote the onset of nonlinearity
and laminar–turbulent transition and, because of the similarity between the laminar
velocity profiles in the rotating-disk and swept-wing boundary layers, that the same
mechanism may exist for swept-wing flows. The rotating-disk boundary-layer flow is
often used as a model for the flow over a swept wing because of the similarity of
the velocity profiles and because both flows are susceptible to crossflow instability.
However, to study more fully the influence of three-dimensionality of the mean
boundary-layer flow, it is necessary to have a family of boundary layers in which the
magnitude of the inflectional crossflow component can be varied in a systematic way.
Here, infinite swept-wedge flows, first introduced by Cooke (1950), are used. For these
so-called Falkner–Skan–Cooke boundary-layer flows, it is possible to simulate simple
planar three-dimensional boundary layers by varying the pressure-gradient parameter
and the ratio of the spanwise to chordwise potential velocities, i.e. the flow angle.

The sweep of a wing affects transition from laminar to turbulent flow in two main
ways. First, transition in the attachment-line boundary layer will be discussed. The
attachment line is the projection of the dividing stream surface at the leading edge
onto the surface of the body and, because for zero sweep it coincides with the locus
of two-dimensional stagnation points, it is often called the stagnation line. Note,
however, that for non-zero sweep there is a non-zero spanwise velocity along the
stagnation line. The transition characteristics of the swept attachment-line flow were
first investigated experimentally; see Pfenninger (1977). The small-amplitude stability
problem was considered by Gaster (1967). Through experimental studies (e.g. Poll
1979) it was found that, in the absence of large boundary-layer tripping devices,
transition of the attachment-line flow resulted from the growth of disturbances, which
are excited by free-stream turbulence, in the boundary layer. The disturbances are



318 R. J. Lingwood

convected along the leading edge until the amplitudes are sufficiently large to cause
nonlinear breakdown to turbulence. If the attachment-line flow, however, is subjected
to large disturbances, for example from the junction of the wing and fuselage or from
boundary-layer fences, the flow undergoes premature transition. Second, assuming
that there is no premature transition of the attachment-line boundary layer and that
it is laminar and stable to small-amplitude free-stream disturbances, then close to the
attachment line the potential flow streamlines are highly curved (in planes parallel
to the surface of the body) due to the favourable pressure gradient exerted there.
Associated with streamline curvature, due to either favourable or adverse pressure
gradients, is a pressure gradient that acts in the direction normal to the streamlines,
which introduces a secondary crossflow within the boundary layer. The crossflow
profile is inflectional and is therefore inviscidly unstable. Crossflow instability often
results in the formation of vortices that are fixed relative to the surface of the
body; see Gray (1952) and Gregory, Stuart & Walker (1955) for evidence of this
on swept wings and on a rotating disk, respectively. These vortices are excited by
surface roughness elements. As well as the stationary vortices, travelling crossflow
disturbances and viscous streamwise disturbances are also possible. The role that
these instability waves play in the transition process of a swept boundary layer that
is stable at the attachment line is not fully understood, but visualizations of these
flows, which show the fixed vortices rather than any travelling disturbances, indicate
that transition is characterized by a jagged chordwise front.

Favourable pressure gradients in the region close to the attachment line on swept
wings lead to the growth of inviscid crossflow disturbances, but have a stabilizing effect
on Tollmien–Schlichtling waves (the result of the viscous instability of the streamwise
profiles). Whereas adverse pressure gradients destabilize Tollmien–Schlichtling waves.
Poll (1985) found that transition in his swept-cylinder experiments was preceded
by a high-frequency secondary instability of the stationary crossflow vortices. This
suggests that the level of surface roughness was sufficiently large to excite large-
amplitude stationary crossflow vortices that modified the mean velocity profiles and
introduced a secondary instability of these, rather than the original, profiles. However,
from a study of the effects of free-stream turbulence levels, Müller & Bippes (1988)
concluded that travelling, and not stationary waves, play the major role in transition.
Clearly, depending on the conditions to which the swept flow is subjected, there are
different routes to transition.

In this paper, the stability of the theoretical mean velocity profiles is studied, i.e.
no account is taken of mean-flow distortions, due to primary instability modes that
can lead to secondary instability. Travelling waves (with non-zero frequency) are
considered as well as stationary waves. The analysis makes use of the parallel-flow
approximation and, therefore, is restricted to the local stability characteristics of the
flow. It will be shown that the boundary layer becomes locally absolutely unstable
in the chordwise direction for certain Reynolds numbers, pressure gradients and flow
angles. However, no simultaneous (or otherwise) spanwise absolute instability could
be found, so even disturbances with a chordwise absolute instability continue to
convect in the spanwise direction. Note that for a true absolute instability, i.e. in the
chordwise and spanwise directions simultaneously, it is necessary to have simultaneous
pinching in the respective wavenumber planes; see Bers (1975) and Brevdo (1991). The
terminology (chordwise) absolute instability will be used throughout the paper despite
continued convection in the spanwise direction. The physical implications of the
chordwise absolute instability seem more limited than the radial absolute instability
of the rotating-disk boundary layer. The partially closed nature of the latter flow
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means that, although the absolute instability is unidirectional, the disturbances are
constrained to convect round circular paths as they grow in time, leading to increasing
amplitudes at fixed radial positions. The swept-wing flow, however, is a fully open
flow and unidirectional absolute instability does not lead to self-contamination of this
sort and, therefore, may not be as important for the transition process. Nevertheless,
the results provide useful information on the propagation of wave packets in swept
boundary-layer flows.

The structure of the paper is as follows. In §2 there is a description of the problem
and in §3 the results are presented and discussed. The conclusions are given in §4.

2. Formulation of the problem
The incompressible flow past an infinite swept wedge at zero angle of attack

outside the viscous boundary layer is the Falkner–Skan–Cooke potential flow (Cooke
1950). The flow can be represented in the chordwise direction (normal to the leading
edge), U∗c∞, and the spanwise (parallel to the leading edge) direction, V ∗s∞, by the
following:

U∗c∞ = C∗(x∗c)
m, V ∗s∞ = constant. (2.1)

Here, the asterisks indicate dimensional quantities, the subscripts c and s indicate the
chordwise and spanwise directions, respectively, x∗c is the coordinate in the chordwise
direction and C∗ is a constant. The wedge angle is βHπ/2, where βH is the usual
two-dimensional (Falkner–Skan) pressure-gradient parameter, known as the Hartree
parameter, and βH = 2m/(m + 1). For this free-stream flow there is a similarity
solution of the boundary-layer equations, in which the variables are functions of the
wall-normal similarity variable z = z∗/l∗ only, where l∗ = [(m + 1)U∗c∞/(2ν

∗x∗c)]
−1/2

and ν∗ is the kinematic viscosity. Rosenhead (1963), for example, shows that the
boundary-layer equations reduce to

f′′′ + ff′′ + βH (1− f′2) = 0, (2.2)

g′′ + fg′ = 0, (2.3)

where f(z)′ = U∗c /U
∗
c∞, g(z) = V ∗s /V

∗
s∞ and the primes indicate differentiation with

respect to z. The boundary conditions are

f(0) = f′(0) = g(0) = 0, f′(∞) = g(∞) = 1. (2.4)

A double-precision fourth-order Runge–Kutta integrator and a Newton–Raphson
searching method were used to solve (2.2) and (2.3).

The streamwise and crossflow velocity profiles can be constructed from f′(z) and
g(z). There is no undisturbed free-stream for Falkner–Skan–Cooke flows, but if such
a direction is assumed then a sweep angle ψ can be defined relative to it. The local
potential flow, U∗∞ = (U∗2c∞ + V ∗2s∞)1/2, is at an angle ψl to the undisturbed direction
and the local potential flow defines the streamwise direction, x, to which the crossflow
direction, y, is normal. The angle between the streamwise direction and the chordwise
direction is the flow angle θ, where

θ = tan−1

(
V ∗s∞
U∗c∞

)
. (2.5)

Using the local potential velocity U∗∞ as the reference velocity, the dimensionless
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Figure 1. Sketch of the flow geometry. The local potential flow is shown displaced to the top
left-hand corner.

5

4

3

2

1

0
–0.2 0 0.2 0.4 0.6 0.8

z
δ

Figure 2. Streamwise (——) and crossflow (– – – –) velocity profiles for θ = 45◦ and βH = −0.1,
and U (— ·— ·) and V (· · · · · ·) velocity profiles for θ = 45◦ and βH = 1.0.

streamwise and crossflow velocity components are

U(z) = f′(z) cos2 θ + g(z) sin2 θ, (2.6)

V (z) = (g(z)− f′(z)) cos θ sin θ. (2.7)

Figure 1 shows the appropriate flow geometry, in which the z-direction is out of
the plane. Figure 2 shows the mean velocity profiles in the streamwise direction
(x) and crossflow direction (y) for θ = 45◦ and βH = −0.1 and βH = 1.0. The
profiles are plotted against z/δ, where δ = δ∗/l∗ is the non-dimensional displacement
thickness based on the streamwise velocity component. For zero pressure gradient, i.e.
βH = m = 0, and any θ the flow reduces to the Blasius flow and δ takes the familiar
value 1.2167. Note that for fixed βH all the crossflow profiles have the same shape;



On the impulse response for swept boundary-layer flows 321

only the magnitude varies with θ. However, the streamwise profiles change shape
with θ.

Physical quantities are non-dimensionalized using the length, time, velocity and
pressure scales δ∗, δ∗/U∗∞, U∗∞ and ρ∗U∗2∞ (where ρ∗ is the fluid density), respectively.
The Reynolds number is then given by

Rδ =
Rc

cos θ
=

Rs

sin θ
=
δ∗U∗∞
ν∗

, (2.8)

where Rc and Rs are chordwise and spanwise Reynolds numbers, respectively.
The parallel-flow assumption is made and linearized perturbation quantities of the

form w(x, y, z, t) = ŵ(z)ei(αx+βy−ωt) (where α, β and ω are the crossflow wavenum-
ber, streamwise wavenumber and perturbation frequency, respectively, and w is the
perturbation velocity in the wall-normal direction) then satisfy a system of six first-
order ordinary-differential equations that are equivalent to the fourth-order Orr–
Sommerfeld equation

(αU + βV − ω)(ŵ′′ − γ2ŵ)− (αU ′′ + βV ′′)ŵ +
i

Rδ
(ŵ′′′′ − 2γ2ŵ′′ + γ4ŵ) = 0, (2.9)

and the coupled second-order Squire-mode equation (Squire 1933)

(αU + βV − ω)η − i(αV ′ + βU ′)ŵ +
i

Rδ
(η′′ − γ2η) = 0. (2.10)

Here ŵ is the vertical component of the three-dimensional spectral velocity perturba-
tion û = (û, v̂, ŵ), η = αv̂ − βû is the vertical component of vorticity, γ2 = α2 + β2 and
the primes denote differentiation with respect to z. The equations can also be written
in terms of the chordwise and spanwise quantities. For example, the Orr–Sommerfeld
equation (2.9) can be written

(αcUc + βsVs −ω)(ŵ′′ − γ2ŵ)− (αcU
′′
c + βsV

′′
s )ŵ +

i

Rδ
(ŵ′′′′ − 2γ2ŵ′′ + γ4ŵ) = 0, (2.11)

where γ2 = α2 + β2 = α2
c + β2

s and ŵ(z)ei(αx+βy−ωt) = ŵ(z)ei(αcxc+βsys−ωt).
To distinguish between a convectively and an absolutely unstable response, consider

an impulsive point forcing, such that the vertical velocity at z = 0 is given by

w(0; xc, ys, t) = δ(xc − xc0)δ(ys − ys0)δ(t), (2.12)

where δ(xc − xc0), δ(ys − ys0) and δ(t) are the Dirac delta functions at xc0, ys0 and
t = 0, respectively. The additional boundary conditions at z = 0, given by the no-slip
condition, are

u(0; xc, ys, t) = v(0; xc, ys, t) = 0, (2.13)

and as z →∞ it is required that all perturbations decay.
The problem reduces to solving a Green’s function of the form

w(z; xc, ys, t) =
1

(2π)3

∫
B

∫
A

∫
F

Φ(z; αc, βs, ω;Rδ)

∆0(αc, βs, ω; , Rδ)
ei(αc(xc−xc0)+βs(ys−ys0)−ωt)dωdαcdβs,

(2.14)
where Φ is a function of z formed from a combination of the independent solu-
tion vectors of the governing ordinary-differential equations (see Lingwood 1997c),
∆0 = 0 is the dispersion relation, which is satisfied by the discrete eigenvalues
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of the homogeneous problem (the unforced case) and A, B and F are inver-
sion contours in the αc-, βs- and ω-planes, respectively. The discrete eigenvalues
(found using a double-precision fixed-step-size fourth-order Runge–Kutta integra-
tor, a Newton–Raphson linear search procedure and Gram–Schmidt orthonor-
malization) provide a mapping between the complex wavenumber planes and the
frequency plane, e.g. zeros of the dispersion relation in the αc-plane are given
by

αc = αcj(ω, βs;Rδ), j = 1, . . . ,M, (2.15)

where M is the number of discrete modes in the αc-plane. Note that the governing
equations have a symmetry property, whereby αcj(ω, βs;Rδ) 7→ −α×cj(−ω×,−β×s ;Rδ)
and ωj(αc, βs;Rδ) 7→ −ω×j (−α×c ,−β×s ;Rδ), where × indicates the complex conjugate.
Thus, for example, trajectories of the dispersion relation given by (2.15) for ωr < 0
and βsr < 0 (henceforth, the subscripts r and i will be used for real and imaginary
parts, respectively) are symmetric with respect to the imaginary αc-axis to those for
ωr > 0 and βsr > 0.

The inversion contours must lie in regions of analyticity in the respective complex
planes. Therefore, the contours must avoid continuous and discrete singularities.
If the inversion contours are incorrectly taken through regions of non-analyticity,
the inversions can still be formally carried out but, as well as being non-causal,
the solution may not converge to a solution of the original problem. In both the
αc- and βs-planes there is a strip of analyticity of non-zero width, centred on the
respective real axes. Note that the ω-dependent hyperbolic branch cuts (Ashpis &
Reshotko 1990; Lingwood 1997c) in the αc- and βs-planes always lie in the distinct
halves of those planes. Taking the A- and B-contours along the real αc- and βs-axes,
respectively, gives purely temporal branches of the dispersion relation in the ω-plane.
The region of analyticity in the ω-plane lies above, and includes, the horizontal
F-contour that must lie above all the discrete singularities and branch cuts given
by the A- and B-contours for zero response at t < 0. The branch cuts in the ω-
plane always lie below the real ω-axis when αc and βs are real. The F-contour
produces branches in the αc- and βs-planes that are not purely spatial since they
have complex ω, with positive ωi. Nonetheless, any branch of the dispersion relation
given by a predetermined ω-distribution will be referred to as a spatial branch;
similarly, any branch that lies in the ω-plane and is given by predetermined αc-
and βs-distributions, which may be complex, will be called a temporal branch. With
ωi above any singularities in the ω-plane, the spatial branches do not cross the
real αc- and βs-axes and they correspond to spatially damped eigenvalue solutions.
It follows that any branch lying in the upper-half αc-plane (βs-plane) leads to a
response in the physical region xc > xc0 (ys > ys0), while any branch lying in
the lower-half αc-plane (βs-plane) corresponds to the region xc < xc0 (ys < ys0).
The above choice of contours ensures convergence of the transforms and satisfies
causality.

The integrals given by (2.14) give the exact solution for the axial perturbation ve-
locity w, when the boundary-layer flow is impulsively disturbed in the way described
by (2.12). The solution can be evaluated by direct numerical integration or, alterna-
tively, by asymptotic methods, in which only dominant terms are considered. Here the
method of steepest descent, in which (xc− xc0)/t and (ys− ys0)/t are kept constant as
t→∞, is used to predict the time-asymptotic impulse response. The discrete response
is sufficient to determine the nature of the instability so, neglecting the continuous
spectra (the branch-cut contributions), the ω-integral is performed first by closing the
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F-contour with semicircles at infinity and using the residue theorem

w(z; x, y, t) =
H(t)

(2π)2i

∫
B

∫
A

M∑
j=1

Θj(z; αc, βs)e
−iψj (αc,βs)tdαcdβs, (2.16)

where

Θj(z; αc, βs) =
Φ(z; αc, βs, ωj(αc, βs);Rδ)

∂∆0(αc, βs, ωj(αc, βs);Rδ)/∂ωj
, (2.17)

and

ψj(αc, βs) = −
(
αc(xc − xc0)

t
+
βs(ys − ys0)

t
− ωj(αc, βs)

)
. (2.18)

Here, ψj is the complex phase function, M is the number of discrete first-order poles
ωj(αc, βs) of the ω-integrand and H(t) is the unit-step function in time. In general,
the function Θj(z; αc, βs) has branch-pole singularities (due to poles coalescing) at
branch points of ω(αc, βs), where ∂∆0/∂ω = 0 and ∂ω/∂αc = ∂ω/∂βs = ∞. However,

the sum over all j does not have any singularities; the summation
∑M

j=1 Θj(z; αc, βs)
is an entire function. This must be so, because the branch points of ω(αc, βs) are just
multiple roots of ω for some αc and βs, all roots are included in the residue evaluation,
and the terms that individually have a singularity cancel. (Coalescing residues do not
cancel if they pinch the integration contour, but it is not possible for multiple roots
of ω to pinch the F-contour because there are no discrete poles above the F-contour
from causality arguments.)

The method of steepest descent is used to evaluate the large-time solutions of the
remaining αc- and βs-integrals along rays of constant (xc − xc0)/t and (ys − ys0)/t,
respectively. Dominant contributions are given by the stationary points of ψj , which
can be shown to be always saddle points. So, if the end points of each steepest-descent
integration are separated by, say, a single saddle point of ψj , the A- and B-contours
(along the real αc- and βs-axes, respectively) are deformed onto steepest-descent paths
that pass through the saddle points α?c and β?s (at which ∂ψj/∂αc = ∂ψj/∂βs = 0, and
? denotes the saddle point), where ω?

j ≡ ωj(α
?
c , β

?
s ) and ψ?j ≡ ψj(α

?
c , β

?
s ). A steepest-

descent path lies along a line where ψji decreases most rapidly, namely orthogonal
to the lines of constant ψji, and is therefore (from the Cauchy–Riemann equations)
given by a line of constant ψjr through the saddle point. In general, the limits of the
integral do not lie on the steepest-descent path, but they can be joined to it within
valleys of ψji, i.e. where ψji < ψji?.

As t → ∞ with fixed (xc − xc0)/t and (ys − ys0)/t, integration along the steepest-
descent paths is dominated by the contribution given by the saddle point of ψj . At
these saddle points

∂ωj

∂αc

∣∣∣∣
α?c ,β

?
s

=
xc − xc0

t
≡ U?,

∂ωj

∂βs

∣∣∣∣
α?c ,β

?
s

=
ys − ys0

t
≡ V?, (2.19)

which are real and therefore

∂ωji

∂αcr

∣∣∣∣
α?c ,β

?
s

=
∂ωji

∂βsr

∣∣∣∣
α?c ,β

?
s

= 0. (2.20)

Assuming that there is a single saddle point of ψj through which the integration
contour can be made to pass for each value of j, and provided ∂2ωj/∂α

2
c |α?,β? is

nowhere zero, following standard mathematics textbooks the time-asymptotic impulse
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response to (2.16) reduces to

w(z; x, y, t) ∼ iH(t)

2π

M∑
j=1

Θj(z; α
?
c , β

?
s )e

i(α?c (xc−xc0)+β?s (ys−ys0)−ω?
j
t)

fj(α?c , β
?
s )t

, (2.21)

where

fj(α
?
c , β

?
s ) =

[(
∂2ωj

∂αc∂βs

)2

− ∂2ωj

∂α2
c

∂2ωj

∂β2
s

]1/2

|α?c ,β?s

, (2.22)

and where Θj/fj is a function that gives the leading-order term of the asymptotic
approximation. In general, it is not possible to deform an integration path through
all saddle points. Therefore, it is not sufficient simply to locate saddle points of
the complex phase function without examining the global topography of the phase
function. However, examination of this problem in Lingwood (1997c) (for a one-
dimensional Green’s function, i.e. where ψ is independent of βs and ys) shows that
there is a direct correspondence between Briggs’ criterion (Briggs 1964; Bers 1975)
and whether the steepest-descent path can pass through the saddle point. Considering
a one-dimensional Green’s function for a moment, for U? = 0, ψ?j = ω?

j and therefore
saddle points of the phase function are equally saddle points of the dispersion relation.
It is known for this case (e.g. Huerre & Monkewitz 1990) that ω?

ji > 0 only indicates
temporal growth at xc = xc0, i.e. absolute instability, if ω?

j is a pinch point of α?c (ωj).
The pinching condition is stipulated by Briggs’ criterion and requires that the two
spatial branches of the dispersion relation that coalesce at α?c originate in distinct
halves (upper and lower) of the αc-plane when ωi is sufficiently large and positive.
Such singularities have become known as pinch points because inherent in Briggs’
method is the use of analytic continuation to deflect the inversion contours, and
at these singularities the A-contour becomes pinched between the coalescing spatial
branches. A branch-point singularity between two spatial branches that originate in
the same half of the αc-plane for large positive ωi does not constitute a pinch point
(even though ∂ω/∂αc = 0 at such a point) and does not cause an absolute instability.
Furthermore, for non-zero values of U?, saddle-point contributions are only relevant
if the coalescing branches of α(ψ) originate in distinct half-planes for large positive
ψi, i.e. if the branches pinch the steepest-descent path; see Lingwood (1997c). In
practice, for the time-asymptotic response (2.21), the summation over M is limited
to the number of unstable modes. The physical solution is given by the real part of
(2.21).

As U? and V? vary, the respective (relevant) saddle points trace paths in the
complex αc- and βs-planes; each point being related to a ray in the physical (xc,
t)- and (ys, t)-spaces. Along each ray the response is dominated by the exponential
term of (2.21) and has the form of a travelling wave with constant complex values
of frequency and streamwise and crossflow wavenumbers. The temporal growth rate
along rays is

ψ?ji = ω?
ji −

α?ci(xc − xc0)
t

− β?si(ys − ys0)
t

. (2.23)

Following the response along given U?- and V?-rays corresponds to a moving observa-
tion position travelling at ∂ωjr/∂αcr|α?c ,β?s and ∂ωjr/∂βsr|α?c ,β?s in the xc- and ys-directions,
respectively. If ψ?ji is positive, the disturbance grows in time in that reference frame;
if ψ?ji is negative, the waves decay in amplitude as they travel and the flow returns to
its undisturbed state.
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Figure 3. Sketch of contours of ψ?i > 0, showing chordwise absolute instability. The wedge of
growth in (xc, ys)-space as t varies is denoted by – – – –.

Figure 3 shows a sketch of contours ψ?i > 0 (dropping the j subscript), i.e. rays of
U? and V? where there is zero or positive growth. For the example given in figure 3,
the maximum growth has positive U? and V? and therefore the maximum of the wave
packet is convectively unstable. However, the trailing edge of the packet crosses the
V?-axis, which implies that there is growth in time for U? = 0 that shall be referred to
as an absolute instability in the xc-direction, i.e. a chordwise absolute instability. Note
that the U?-axis and V?-axis can be thought of as the (xc−xc0)-axis and (ys−ys0)-axis,
respectively, in which case the growth-rate contours represent the positions in space
where the wave packet is growing at a particular instant in time and the dashed
lines indicate the wedge of growth in (xc, ys)-space as t varies. Differentiating ψ?i with
respect to U? and V? shows that, although in general α?c and β?s are complex, for any
fixed U? (V?) the maximum growth rate with respect to V? (U?) is given by the saddle
point for which β?si = 0 (α?ci = 0). For example, consider the case where U? = 0 then

ψ?i = ω?
i − β?siV ?, (2.24)

and maximizing with respect to V? gives

∂ψ?i
∂V ?

=
∂ω?

i

∂β?si

∂β?si
∂V ?

− β?si −
∂β?si
∂V ?

V ? = 0. (2.25)

Because of the Cauchy–Riemann relations (∂ω?
i /∂β

?
si = ∂ω?

r /∂β
?
sr = V?) the first and

third terms cancel, implying that β?si = 0. The dashed-dotted lines in figure 3 denote
lines of α?ci = 0 and β?si = 0. Clearly, the maximum in ψ?i is given by the particular
saddle points for which both α?ci = 0 and β?si = 0, where the lines intersect.

In this study of Falkner–Skan–Cooke boundary layers no true absolute instability
(growth in time for fixed xc and ys) could be found. Note that for a true absolute
instability (i.e. in the chordwise and spanwise directions simultaneously), which would
result in the contours of ψ?i > 0 covering the origin in figure 3, it is necessary to
have simultaneous pinching in the respective wavenumber planes; see Bers (1975)
and Brevdo (1991). In fact, no spanwise absolute instability (growth in time for fixed
ys) was found. However, chordwise absolute instability (where disturbances continue
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to convect in the spanwise direction but grow in time at fixed xc) was found. In the
results that follow, examples of pinch points in the complex αc-plane (∂ω/∂αc = 0)
for real βs and ∂ωi/∂βsr = 0 will be shown. These points satisfy the saddle-point
conditions (2.19) and (2.20) for U? = 0 and, because βsi = 0, for the value V? that
has the maximum growth: V?m as shown by × in figure 3. These points illustrate
chordwise absolute instability.

3. Results and discussion
3.1. Non-attachment-line flows

A swept flow with an adverse pressure gradient of βH = −0.1 has been chosen, which
corresponds to the flow around an infinite swept expansion corner of 9◦, to study the
behaviour of a flow for which there is the possibility of both crossflow and streamwise
instability at low Reynolds number.

Figure 4 (a) shows the complex ω- and αc-planes with βs = β?s ≈ 0.255, and figure
4 (b) shows the ψ- and βs-planes with αc = α?c ≈ −0.108 − i0.0660; Rδ = 1000,
βH = −0.1 and θ ≈ 80.9◦. The zigzag lines in the αc-plane represent the imaginary-
axis branch cuts that end in branch points at αci = ±β?s (see Lingwood 1997c). The
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dashed line in the ω-plane is the analytic continuation of the F-contour from (2.14)
and values of ω on this line map to the dashed spatial branches in the αc-plane, which
are labelled αc1(ωF ) and αc2(ωF ). Similarly, the solid line in the αc-plane is the analytic
continuation of the A-contour from (2.14) and it maps to the solid temporal branch in
the ω-plane, which is labelled ω(αcA). Figure 4 (a) shows the A-contour being pinched
between coalescing spatial branches when the F-contour is lowered from its original
position towards the real ω-axis. This process of deforming the A- and F-contours
is an integral part of Briggs’ method of solving for the time-asymptotic impulse
response but, as discussed in §2, for a saddle point in the αc-plane to contribute to
the time-asymptotic impulse response calculated using the method of steepest descent
it is necessary for ω? to be a pinch point of αc(ω). The vertical dashed-dotted line
that extend upwards from the branch point at ω? (×) in the ω-plane shows the effect
of increasing ωi while keeping all other parameters constant at the branch point
values. The mapping of the dashed-dotted line into the αc-plane results in two lines
extending from α?c (×) into distinct halves of the αc-plane. Thus, the A-contour is
pinched between two coalescing spatial branches for positive ωi. Figure 4 (b) (where
lines of one type map to lines of the same type in the neighbouring plane) shows that
the mapping into the βs-plane of the steepest-descent path (S) in the ψ-plane, which
by definition has constant ψr and a maximum of ψi at the branch point ψ? that maps
to the saddle point in the βs-plane (both marked by ×), is pinched by coalescing
branches of βs(ψ), i.e. ψ? is a pinch point of βs(ψ), indicating that this saddle point
in the βs-plane contributes to the time-asymptotic impulse response. The line labelled
H in the ψ-plane, when mapped to the βs-plane, gives the height of the saddle point
and therefore bounds the valleys of ψi, through which the steepest-descent path must
pass. Because ∂ωi/∂βsr = βsi = 0 at this pinch point, the saddle-point conditions are
satisfied and furthermore this pinch point gives the maximum temporal growth rate
over all V? for U? = 0 (and the given Rδ , θ and βH ); see the discussion associated
with figure 3. Thus, this pinch point indicates a chordwise absolute instability and
∂ωr/∂βsr|α?c ,β?s ≡ V?m ≈ 0.415 gives the speed of propagation of the maximum of the
wave packet in the ys-direction for xc = xc0. In figure 4 (a), U? = 0 and βs = β?s is
real and fixed, therefore the ω-plane is simply a horizontal translation of the ψ-plane
by an amount given by β?s V

?m (mappings in the αc-plane would be unaffected by this
translation), and the F- and H-lines have the same imaginary parts. In figure 4 (b),
where αc = α?c , U

? = 0 and V? = V?m 6= 0, as ψ varies so do both βs and ω, and so
the ω-plane is no longer a simple translation of the ψ-plane. Note that the cusp in
ω(αcA) at ω? in figure 4 (a) is a characteristic of a pinch point. This feature has been
used by Kupfer, Bers & Ram (1987) to locate points of absolute instability.

The solid and dotted lines in figure 5 are loci of points on two Riemann sheets of
the dispersion relation for which ∂ω/∂αc = ωi = 0, for Rδ = 1000 and βH = −0.1.
Note that for favourable pressure gradients (βH > 0) θ = 90◦ at xc = 0 and θ → 0◦

as xc → ∞; for adverse pressure gradients (βH < 0) θ = 0◦ at xc = 0 and θ → 90◦

as xc → ∞. Therefore for flows with adverse pressure gradients and θ = 90◦, Rδ
must be infinite. Nonetheless, for the moment, θ will be regarded as a free parameter.
Inside the curves ∂ω/∂αc = 0 (i.e. U? = 0) and ωi > 0, but it is only on the dashed
and dashed-dotted lines that ∂ωi/∂βsr = 0; only on these lines are the saddle-point
conditions (2.19) and (2.20) satisfied fully. These lines intersect at βsr ≈ 0.255 and
θ ≈ 80.9◦ (the parameters of figure 4), i.e. there appear to be two solutions of the
saddle-point conditions. However, there is not a second region of absolute instability
because although the points on the dashed line are branch points they are not pinch
points. For example, figures 6 (a) and 6 (b) show a pinch point and a branch point,



328 R. J. Lingwood

βs

90

80

70

60
0 0.2 0.4 0.6 0.8 1.0

öi > 0

öi > 0

õ (deg.)

Figure 5. Lines where ωi = ∂ω/∂αc = 0 (—— and · · · · · ·) and lines where ∂ω/∂αc = ∂ωi/∂βsr = 0
(— ·— · and – – – –) for Rδ = 1000 and βH = −0.1. The asterisk marks βs ≈ 0.255 and θ ≈ 80.9◦,
which are the parameters relevant to figures 4 and 6.

4

2

0

–2
0.08 0.09 0.1

F

öi!∞

ö(αcA)

ör

öi

(a)

(b)

αci

0.5

–0.5

0

–0.2 –0.1 0

αcr

A

öi!∞
αc1(öF)

αc2(öF)

2
F

0

–2

–4
0.06 0.08

–0.5

0.5

0

αc1(öF)

αci

(¬10–3)

0–0.2–0.4

αc2(öF)

öi!∞

0.10

4

öi

öi!∞
(¬10–3)

Figure 6. (a) Same pinch point as shown in figure 4 (a). (b) Second branch point (×) and the
associated spatial branches in the αc-plane (given by the F-contour) for βH = −0.1, θ ≈ 80.9◦ and
βs ≈ 0.255.



On the impulse response for swept boundary-layer flows 329

(¬10–3)
6

4

2

0

10000

5000

1000 Rd = 500

ωQ

i

(a)

0

0.10

0.05

70 75 80 85 90 70 75 80 85 90

(b)

ωQ

r

70 75 80 85 9070 75 80 85 90

(d)
0

–0.10

–0.05

αQ

crαQ

ci

0

–0.10

–0.05

(c)

70 75 80 85 90

0.4

0.2

0

(e)

βQ

s

õ (deg.) õ (deg.)
70 75 80 85 90

90

100

110

120
( f )

eQ

(deg.)

Figure 7. Reynolds-number and θ dependences of components with maximum chord-
wise absolute instability for ranges of θ with ω?

i > 0 and βH = −0.1. For all points
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– – – –, Rδ = 2000; ——, Rδ = 5000; — ·— ·, Rδ = 10000.

respectively, at the parameters marked by the asterisk in figure 5, i.e. βH = −0.1,
θ ≈ 80.9◦ and βs ≈ 0.255. The dashed-dotted lines in figure 6 (b) show that both
the spatial branches originate in the upper-half αc-plane. The F-contour is pictured
passing through the branch point and mapping to two spatial branches in the αc-
plane, but because there is no pinching there is no reason why the F-contour could
not be lowered to the real ω-axis while simultaneously deforming the A-contour
(following Briggs’ method) giving a purely convectively unstable response to (2.14).
Two coalescing spatial branches that originate in the same half αc-plane create a
second-order pole. For such cases, there is a period of algebraic growth, which may
be important if the second-order pole is near neutral, but ultimately the behaviour
will be exponential and dictated by the sign of αci.

The Reynolds-number and θ dependences of the chordwise absolute instability for
βH = −0.1 are shown in figure 7. For all points in figure 7 U?, β?si and ∂ωi/∂βsr|α?,β?
are zero, and the pinching requirements are satisfied. In (a) ω?

i (the magnitude of the
maximum absolute growth rate) is shown to increase with θ and the maximum value
of ω?

i initially increases with Rδ but then begins to decrease again for Rδ > 2000.
For the given Reynolds numbers, ω?

r (figure 7 b) is non-zero and positive throughout,
and α?ci 6 0 (see c), which means that the most absolutely unstable modes correspond
to travelling disturbances that lie within the convectively unstable region for the
downstream (xc > 0) propagating branch of the dispersion relation that coalesces at
the pinch points. The other branch that coalesces at the pinch points corresponds
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to a damped upstream (xc < 0) propagating mode. For θ < 90◦, ε? = tan−1(β?s /α
?
cr)

(measured in the same way as θ from the chordwise direction and shown in figure
7 f) is always greater than 90◦; α?cr is always negative (see d) for positive β?s (see e).
The wave fronts are inclined at between 0◦ and about 25◦ to the chordwise direction.
Interestingly, for a given θ and βH , the Reynolds-number dependence of ε? is very
weak with all the curves lying on top of one another. This suggests that the chordwise
absolute instability is essentially an inviscid mechanism and may be related to the
form of the mean velocity profiles in the ε?-direction.

In figure 8, V?m/ sin θ is plotted. The reason for this scaling of V?m is that V?m =
V?m∗/U∗∞ (because U∗∞ is the non-dimensionalizing velocity scale in this study), but
choosing to plot the dimensional propagation velocity of the component with the
maximum absolute growth rate as a proportion of the spanwise potential flow velocity
gives V?m∗/V ∗s∞ = V?m/ sin θ. Like β?s , V

?m/ sin θ is insensitive to θ, but decreases with
increasing Rδ .

For adverse pressure gradients, the flow angle only reaches 90◦ at infinite Reynolds
number, so the results for θ = 90◦ in figure 7 are non-physical. However, for θ < 90◦,
it may be that in certain adverse-pressure-gradient flows the combination of flow
angle and Reynolds number is such that there is a chordwise absolute instability.
Free-stream-excited disturbances would then only convect in the spanwise direction,
while growing in time at fixed chordwise positions.

3.2. The attachment-line flow

A boundary layer with βH = m = 1.0 and non-zero θ will be discussed. This flow is the
swept-Hiemenz problem that corresponds to a flow impinging on a yawed flat plate
(i.e. a yawed 180◦ wedge). It also occurs on any swept blunt-nosed body at the attach-
ment line. The two-dimensional stagnation flow was found to be stable to infinites-
imally small disturbances propagating along ys by Wilson & Gladwell (1978). The
linear and nonlinear stability of the swept attachment-line flow has been studied by
Hall, Malik & Poll (1984) and Spalart (1988), and the stability of this flow away from
the attachment line has been studied by Spalart (1989) and Malik, Li & Chang (1991).
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Figure 9. Reynolds-number and θ dependences of components with maximum chord-
wise absolute instability for ranges of θ with ω?

i > 0 and βH = 1.0. For all points
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Although on swept wings a pressure gradient of βH = 1.0 can only occur at the at-
tachment line, where the flow is purely in the spanwise direction, the results presented
by Mack (1984) suggest that all flows with strong favourable pressure gradients will
have similar characteristics. The range within which βH = 1.0 is a good approximation
to the flow around the leading edge of a swept wing depends on the cross-sectional
shape of the aerofoil and the Reynolds number; the error increases as the radius
of curvature of the leading edge decreases. On the attachment line, where θ = 90◦,
δ ≈ 1.026, the non-dimensional boundary-layer thickness (defined as the height at
which the velocity has reached 99% of the free-stream value) is about 3.055 and the
non-dimensional momentum thickness is about 0.404. In fact, on the attachment line
l∗ = (ν∗/C∗)1/2 is constant, as is δ∗, U∗∞ = V ∗s∞ and Rδ = Rs.

Figure 9 is equivalent to figure 7, but here is for βH = 1.0; β?si = ∂ωi/∂βsr =
∂ω/∂αc = 0 and the pinching requirements are satisfied. Lines of ω?

i > 0 are given
in figure 9 (a), which shows that the maximum absolute growth rate increases with
Rδ and, for fixed Rδ , peaks at a value of θ close to 80◦. Figure 9 (b) shows ω?

r , which
is positive throughout, i.e. the components with chordwise absolute instability are
travelling waves. On the attachment line itself (where θ = 90◦ and βH = 1.0) α?c (see c
and d) was found to be zero, which means that these waves with chordwise absolute
instability are equivalently two-dimensional waves with wave fronts that are normal
to the leading edge convecting purely in the spanwise direction with a maximum
temporal growth rate given by ω?

i travelling at V?m. This is consistent with Poll’s
(1984) observations of free-stream-excited wave packets that convect in the spanwise
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direction along the attachment line of swept cylinders (for Rs > 570). These wave
packets were observed to have wave fronts aligned normal to the leading edge. The
breakdown to turbulence of these packets is via convective instability in the spanwise
direction, i.e. linear growth of the disturbances as they are convected along the span
leading to amplitudes sufficiently large to promote nonlinear behaviour and transition.
These disturbances are amenable to en-method calculations in the spanwise direction;
see Poll (1984). The critical Reynolds number for the onset of chordwise absolute
instability on the attachment line is Rs = Rδ ≈ 681, which occurs for β?s ≈ 0.29 and
ω?
r ≈ 0.109. The overall critical spanwise Reynolds number for the onset of chordwise

absolute instability for βH = 1.0 is Rs ≈ 545 (Rδ = 561), where β?s ≈ 0.25, ω?
r ≈ 0.089

and θ ≈ 82.1◦. For θ < 90◦, α?ci first becomes positive and then becomes negative
with decreasing θ. This means that for θ less than about 85◦ the spatial branch that
originates in the upper-half αc-plane, and therefore gives a response in the region
xc−xc0 > 0, has crossed the real axis in order to reach the pinch point. This indicates
that the absolutely unstable region lies within a region of convective instability for
the downstream mode. The spatial branch that originates in the lower-half αc-plane
does not cross the real axis and therefore it remains convectively stable in the region
xc − xc0 < 0. For θ between about 85◦ and 90◦ the reverse is true: the absolute
instability lies within a region of weak convective instability for the upstream mode
and the spatial branch that originates in the upper-half αc-plane does not cross the
real axis, remaining convectively stable in the region xc − xc0 > 0. Figure 9 (e) shows
that β?s decreases with increasing Rδ . The wave angle ε? = tan−1(β?s /α

?
cr) is plotted

in figure 9 (f) and (for θ < 90◦) it is always greater than 90◦; α?cr (see d) is always
negative for positive β?s . The wave fronts have a maximum inclination to the chordwise
direction of about 40◦ at θ ≈ 80◦. The Reynolds-number and θ dependences of V?m

for βH = 1.0 are similar to those for βH = −0.1 shown in figure 8.

4. Conclusions
The disturbances on a family of three-dimensional boundary-layer flows have been

investigated using linear stability theory. Motivated by the recent discovery of an
absolute instability of the rotating-disk boundary layer (Lingwood 1995, 1996), this
investigation has focused on the possibility of a similar mechanism operating in
the swept-wing boundary layer. For attachment-line flows that are not prematurely
tripped into a turbulent state by large-amplitude disturbances, it has been found that
close to the attachment line there is a chordwise absolute instability above a critical
spanwise Reynolds number of Rs ≈ 545 (occurring at θ ≈ 82.1◦ and βs ≈ 0.25).
The critical Reynolds number for the onset of chordwise absolute instability on
the attachment line itself, i.e. for θ = 90◦ and βH = 1.0, is Rs = Rδ ≈ 681. It has
been shown that there is chordwise absolute instability at large flow angles for an
adverse-pressure-gradient flow (βH = −0.1). It is expected that the behaviour of
Falkner–Skan–Cooke boundary layers with values of βH other than 1.0 and −0.1 will
be similar.

The chordwise absolute instability does not prevent disturbances convecting in the
spanwise direction. Furthermore, the absolute instability mechanism does not predict
how far along the span the disturbances are convected before the onset of transition
but, provided the spanwise extent of the flow is large enough for critical disturbance
amplitudes to be reached before being convected out of the domain of interest (e.g.
beyond the end of the wing), it is possible that the onset of absolute instability
indicates the chordwise position of the onset of nonlinearity, which may lead to
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transition to turbulence. Alternatively, because the chordwise absolute instability at
the attachment line inhibits the propagation of disturbances into the rest of the flow,
it may be that disturbances are swept along the span without causing transition and
without contaminating the rest of the flow. If this suggestion is the case it would imply
that the chordwise absolute instability helps to keep the flow laminar by limiting the
propagation of disturbances that enter the boundary layer at the attachment line.
At the very least these results give useful information on the propagation of wave
packets in laminar swept boundary-layer flows, and allay the speculation about
absolute instability of swept-wing boundary layers arising from the suggestive results
for the rotating-disk boundary layer.

This work was performed while supported by a Research Fellowship at Pembroke
College, Cambridge, and has benefited from discussions with Dr J. J. Healey.
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